Learning-induced plasticity of cortical representations does not affect GAD65 mRNA expression and immunolabeling of cortical neuropil.
نویسندگان
چکیده
Two forms of glutamic acid decarboxylase (GAD) are present in inhibitory neurons of the mammalian brain, a 65-kDa isoform (GAD65) and a 67-kDa isoform (GAD67). We have previously found that GAD67 is upregulated during learning-dependent plasticity of cortical vibrissal representations of adult mice. After sensory conditioning involving pairing stimulation of vibrissae with a tail shock, the increase in mRNA expression and density of GAD67-immunoreactive neurons was observed in barrels representing vibrissae activated during the training. In the present study, using the same experimental model, we examined GAD65 mRNA and protein levels in the barrel cortex. For this purpose, we used in situ hybridization and immunohistochemistry. No changes in the level of GAD65 mRNA expression were detected after the training. The pattern of GAD65 mRNA expression was complementary to that observed for GAD67. Immunocytochemical analysis found no changes in immunolabeling of neuropil of the barrels representing the vibrissae activated during the training. The results show that, in contrast to GAD67, cortical plasticity induced by sensory learning does not affect the expression of GAD65.
منابع مشابه
O 20: The Role of Neuroinflammation in Epilepsy: A New Target for Treatment
Despite progress in pharmacological and surgical treatments of epilepsy, little is known about the processes that a healthy brain is rendered epileptic after seizure occurrence. Growing evidence supports the involvement of inflammatory processes, both the adaptive immunity and systemic inflammatory response, in induction of individual seizures as well as in the epileptogenesis. Clinical and exp...
متن کاملThe Role of Wnt Signaling Pathway on the Expression of TGFβ 1 and TGFβ 2 in Cultured Rat Cortical Astrocytes
Introduction: Astrocytes, the most abundant glia in the central nervous system, modulate neuronal survival and function. Astrocytic functions are mediated by synthesis and secretion of wide ranges of polypeptides through mechanism (s) poorly understood. Among these, TGFβs are synthesized and released by the astrocytes. In this study, the involvement of Wnt signaling pathway on the synthesi...
متن کاملThe emotive brain, the noradrenergic system, and cognition
Motivation and attention can have a profound influence on perception, learning and memory. Neuromodulatory systems, especially the noradrenergic (NE) system, co-vary with psychological states to modulate cortical arousal, influence sensory processing and promote synaptic plasticity. There is even some suggestion that the NE system might facilitate functional recovery after brain damage. Post-sy...
متن کاملThe emotive brain, the noradrenergic system, and cognition
Motivation and attention can have a profound influence on perception, learning and memory. Neuromodulatory systems, especially the noradrenergic (NE) system, co-vary with psychological states to modulate cortical arousal, influence sensory processing and promote synaptic plasticity. There is even some suggestion that the NE system might facilitate functional recovery after brain damage. Post-sy...
متن کامل(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex
Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain research
دوره 1044 2 شماره
صفحات -
تاریخ انتشار 2005